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Partitioning How Natural Variability and Climate Change Influence 
Hydroclimate Response in Five Major Central Valley Watersheds

AUTHORS

Hydroclimate changes in Central California have major 
implications for water availability in the region.

The current drought enveloping California has led to
unprecedented low snowpack and persistent water
shortages. This drought is occurring within the
context of two decades of extreme climate
variability. A better understanding of the region’s
vulnerabilities requires partitioning how both natural
variability in the weather system and mechanisms of
climate change are shaping the region’s hydrologic
response regimes. We develop a framework to
characterize the relative importance of these drivers
and demonstrate implications for five key basins in
the San Joaquin region (Figure 1).

Weather-regime based stochastic weather generation 
conditioned on climate changes is used to develop 
regional weather and streamflow ensembles. 
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Figure 2. We simulate sequences of weather regimes (WR, patterns of large-scale atmospheric
flow) and local precipitation and temperature using a stochastic weather generator. We develop
scenarios of thermodynamic climate change (i.e., warming and Clausius-Clapeyron (CC) scaling of
precipitation) and dynamic climate variability using 600 years of tree-ring reconstructed WR
dynamics.

Figure 3. Climate change-informed weather ensembles are generated by layering different
combinations of thermodynamic climate changes on baseline paleo-reconstructed temperature
and precipitation scenarios for each basin. Each scenario is fed through a hydrologic model,
SAC-SMA, to create traces of streamflow for each basin.

The most recent 30-year record is 
characterized by more frequent droughts 
that are longer and more intense. 
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Figure 4. SSI-based drought metrics (occurrence, intensity, and duration) are
calculated across 50-member ensembles for the baseline and CC scenarios using
a 30-year moving window. The metrics align with well-defined consequential
paleo-periods, particularly the late 1500s megadrought and the early 1600s wet
period. The most recent 30-year window is characterized by high drought
occurrence and severity, though the drought duration is not as long as other
parts of the paleo-period. The increasing trend in drought occurrence and
intensity can be, in part, due to key persistent drought periods that have
occurred in the mid to late 1800s, 1900s, and the most recent 20-year period.

Natural variability is a strong driver of 
drought metrics, but climate change effects 
are significant over longer windows. 

Extreme flooding events are strongly 
driven by thermodynamic changes.

Joint flooding across basins is highly 
driven by natural variability.

Figure 6. Drivers of variability in flows associated with 10-yr return
period events. Natural variability is a more prominent driver when the
metric is derived over a smaller window. Climate changes become a
more prominent driver over longer windows. Flooding within snow-
dominated basins are primarily driven by changes in temperature, while
lower-elevation basins (i.e. New Hogan Lake) see a greater influence
from precipitation scaling.

Figure 5. An analysis of variance (ANOVA) was performed to determine main
drivers of the variability in drought metrics for the Tuolumne. Natural variability is
the strongest driver of all three metrics when the metrics are derived over
smaller 30-year windows. Climate change has a much larger presence when
metrics are derived across longer windows. Of the thermodynamic changes,
temperature trends are the strongest driver of the drought metrics, though
precipitation scaling becomes more relevant to determining drought intensity.
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Figure 7. Drivers of variability in a copula-based metric that captures
the likelihood of exceeding a 100-yr return period event across multiple
basins. Natural variability (i.e. randomness in storm tracks) is a strong
driver of joint flooding. Joint flooding that exhibits a larger influence
from climate change (which would influence snowmelt or scale up
storms) tends to occur across basins that are in close proximity.
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